3Sum

Problem

Given an integer array nums, return all the triplets [nums[i], nums[j], nums[k]] such that i != j, i != k, and j != k, and nums[i] + nums[j] + nums[k] == 0.

Notice that the solution set must not contain duplicate triplets.

Case 1

Input: nums = [-1,0,1,2,-1,-4]
Output: [[-1,-1,2],[-1,0,1]]
Explanation:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
The distinct triplets are [-1,0,1] and [-1,-1,2].
Notice that the order of the output and the order of the triplets does not matter.

Case 2

Input: nums = [0,1,1]
Output: []
Explanation: The only possible triplet does not sum up to 0.

Case 3

Input: nums = [0,0,0]
Output: [[0,0,0]]
Explanation: The only possible triplet sums up to 0.

Constraints

3 <= nums.length <= 3000
-105 <= nums[i] <= 105

Solution

It involves using two pointers to find all unique triplets within the array that add up to zero.

function threeSum(nums: number[]): number[][] {
  const result: number[][] = [];
  nums.sort((a, b) => a - b);

  for (let i = 0; i < nums.length - 2; i++) {
    if (i > 0 && nums[i] === nums[i - 1]) continue; // skip duplicate anchors

    let left = i + 1;
    let right = nums.length - 1;

    while (left < right) {
      const sum = nums[i] + nums[left] + nums[right];

      if (sum === 0) {
        result.push([nums[i], nums[left], nums[right]]);
        while (left < right && nums[left] === nums[left + 1]) left++; // skip duplicate left values
        while (left < right && nums[right] === nums[right - 1]) right--; // skip duplicate right values
        left++;
        right--;
      } else if (sum < 0) {
        left++;
      } else {
        right--;
      }
    }
  }

  return result;
}

After sorting, each index i becomes the fixed anchor for a triplet, and two pointers left/right sweep the remainder of the array looking for complementary pairs that sum to -nums[i]. Duplicates are removed deterministically by advancing i, left, and right past repeated values rather than relying on auxiliary hash maps, keeping the algorithm $O(n^2)$ while guaranteeing unique triplets.

Related Posts

Easy
Easy
LeetCode No. 1
Array
Hash Table
May 24, 2023
Hard
Hard
LeetCode No. 4
Array
Binary Search
Divide And Conquer
Feb 12, 2024
Medium
Medium
LeetCode No. 5
String
Dynamic Programming
Two Pointers
Jan 8, 2026
Medium
Medium
LeetCode No. 39
Array
Backtracking
May 29, 2023
Medium
Medium
LeetCode No. 78
Array
Backtracking
Bit Manipulation
May 26, 2023